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Sparse Approximation to the Eigensubspace
for Discrimination

Zhihui Lai, Wai Keung Wong, Zhong Jin, Jian Yang, and Yong Xu, Member, IEEE

Abstract— Two-dimensional (2-D) image-matrix-based projec-
tion methods for feature extraction are widely used in many fields
of computer vision and pattern recognition. In this paper, we pro-
pose a novel framework called sparse 2-D projections (S2DP) for
image feature extraction. Different from the existing 2-D feature
extraction methods, S2DP iteratively learns the sparse projec-
tion matrix by using elastic net regression and singular value
decomposition. Theoretical analysis shows that the optimal sparse
subspace approximates the eigensubspace obtained by solving
the corresponding generalized eigenequation. With the S2DP
framework, many 2-D projection methods can be easily extended
to sparse cases. Moreover, when each row/column of the image
matrix is regarded as an independent high-dimensional vector
(1-D vector), it is proven that the vector-based eigensubspace
is also approximated by the sparse subspace obtained by the
same method used in this paper. Theoretical analysis shows that,
when compared with the vector-based sparse projection learning
methods, S2DP greatly saves both computation and memory
costs. This property makes S2DP more tractable for real-world
applications. Experiments on well-known face databases indicate
the competitive performance of the proposed S2DP over some 2-D
projection methods when facial expressions, lighting conditions,
and time vary.

Index Terms— Elastic net, face recognition, feature extraction,
manifold learning, sparse subspace.

I. INTRODUCTION

TECHNIQUES for linear dimensionality reduction in
supervised or unsupervised learning tasks have attracted

much attention in the fields of computer vision and pat-
tern recognition. In the past 20 years, many dimensionality
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reduction methods have been developed to deal with the
high-dimensional data, including scene images, face images,
palmprint images, and handwritten character images. In the
traditional linear dimensionality reduction (or linear feature
extraction) methods, one usually first transforms the image
matrices to high-dimensional vectors and then projects these
high-dimensional vectors into a low-dimensional subspace for
feature extraction and classification.

Among the traditional linear dimensionality reduction tech-
niques, principal component analysis (PCA) [1]–[3] and linear
discriminant analysis (LDA) [4], [5] are the most frequently
used methods in many application fields. However, the result-
ing high-dimensional image vector space in these traditional
feature extraction methods makes it difficult to accurately
evaluate the covariance matrices because of the relatively small
number of training samples [6], [7]. Furthermore, computing
the eigenvectors of a large-size covariance matrix is very time
consuming. Another problem is that LDA always encoun-
ters the singularity of the within-class scatter matrix when
there are small sample size (SSS) problems, which further
makes it intractable or unstable to compute the generalized
eigenvectors.

In order to avoid the above problems, Yang et al. [6]
proposed the well-known 2DPCA for image feature extraction.
Different from PCA, 2DPCA is based on 2-D image matrices
rather than 1-D image vectors. By defining the image-matrix-
based covariance matrix, the optimal projections of 2DPCA
can be obtained by eigendecomposition of a very small-size
matrix. Xu et al. [7] showed the theoretical similarities and
differences between 2DPCA and PCA. Motivated by 2DPCA,
many image-matrix-based methods are proposed for feature
extraction. Zuo et al. [8] proposed the bidirectional PCA
with assembled matrix distance metric for image recognition.
Ye [9] proposed the generalized low-rank matrix approxima-
tion (GLRMA) for face image feature extraction. 2-DPCA
and GLRMA are unsupervised methods, and the classification
abilities may be limited, since the label information is not
used in the learning steps. By integrating the label informa-
tion in constructing the within-class and between-class image
covariance matrices for discrimination, 2-D linear discriminant
analysis (2DLDA) [10], which is a supervised method, can
achieve higher classification accuracy in many applications.
Based on the same idea of 2DLDA, bilateral 2DLDA [11] is
also proposed by using the iteration method, which frequently
solves the generalized eigenequations to obtain optimal bilat-
eral projections for feature extraction. The essential idea
developed is that classical LDA operates on the image vectors,
which are the tensors with order 1, and 2DLDA operates on
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image matrices, which are regarded as second-order tensors.
A natural way is to extend the linear projection methods
to higher order tensors. Thus, the tensor-based discriminant
analysis methods [12]–[14] were proposed for feature extrac-
tion and recognition.

Although there are a number of variations of the image-
matrix-based LDA method, the most fundamental ones are
still 2DPCA and 2DLDA. However, PCA, LDA, and their
2-D versions cannot preserve the local geometric structure
of the image data set. Recent research shows that the high-
dimensional data such as face images lie on a low-dimensional
nonlinear manifold. How to preserve the manifold’s local
geometric structure has been an important research field in
the past 10 years. Representative nonlinear manifold learning
methods were proposed in [15]–[18], and some robust nonlin-
ear methods can be found in [19] and [20]. A tractable method
to make the nonlinear techniques more suitable for real-world
applications is to learn the explicit linear mapping which
can also preserve the geometric structure of the manifold.
Therefore, locality preserving projections (LPP) [21]–[23], the
linear approximation of the Laplacian eigenmap [17], was
proposed to learn the low-dimensional subspace for feature
extraction. LPP preserves the local manifold structure modeled
by a nearest-neighbor (NN) graph of the high-dimensional
data. With the explicit maps, the training and test data can
all be directly projected to the low-dimensional subspace for
visualization, feature extraction, and classification purposes.
From analysis on the essence of the LPP, it can be found
that LPP can be seen as a generalization of LDA with
the same SSS problems [23]. Thus, LPP cannot be imple-
mented directly because of the singularity of the matrix in
its generalized eigenequation [24]. Motivated by the 2DPCA
and 2DLDA, which operate directly on 2-D image matrices,
2-D locality preserving projection (2DLPP) [25]–[27] was
proposed for linear dimensionality reduction. Recently, some
new improved versions of 2DLPP [24], [28]–[30] were also
proposed.

However, the classical and the manifold learning-based
linear projection methods have limitations. Since the learned
projections are the nonzero linear combiner of all the image
vectors or image matrices, they regard each variable of
the patterns (image vectors or image matrices) as equally
important in dimensionality reduction. The important features
or variables in the low-dimensional space reduced by such
“dense” projections may be destroyed or submerged, thus the
classification accuracy may be affected. For simplicity, the
projections obtained from directly solving the eigenequation
and thus containing almost nonzero elements are called dense
projections in this paper.

In recent years, many feature selection techniques have been
developed to explore the important information (or say vari-
ables/factors in statistic learning) for dimensionality reduction.
Sparse PCA (SPCA) [31] was proposed by using the least
angle regression [32] and L1-norm elastic net [33] regression
to obtain sparse principle components. d’Aspremont et al. [34]
relaxed the hard cardinality constraint and obtained a convex
approximation using semidefinite programming. In [35] and
[36], Moghaddam et al. proposed a spectral bounds framework

for sparse subspace learning. Particularly, they proposed both
exact and greedy algorithms for sparse PCA and sparse LDA,
though their sparse LDA can only be applied to the two-
class problem. Recently, sparse discriminant analysis (SDA)
[37] was proposed for feature extraction. And sparse linear
discriminant analysis (SLDA) [38], which combines Lasso
regression [39] and SVD to learn the sparse projections, was
also developed to deal with the data piling problem. With the
same way as SLDA for obtaining the sparse projections, sparse
locality-preserving embedding (SLPE) [40] was also proposed
for visualization. The recently proposed manifold elastic net
(MEN) [41] integrates sparse regression, manifold learning,
and dimensionality reduction simultaneously.

However, existing sparse linear projection methods such as
SPCA, SDA, SLDA, SLPE, and MEN all operate on the high-
dimensional image vectors instead of 2-D image matrices,
in which some useful structural information embedded in
the original 2-D images may be lost. Another significant
disadvantage of the existing sparse feature extraction methods
is that it is rather time consuming to directly operate on the
very high-dimensional vectors with a large cardinality. For
SDA, SLDA, and SLPE, because there are the small sample
size problems or the singularities of the local or within-class
scatter matrices, it is very difficult to give the theoretical
connections between the sparse subspace learning algorithms
and the existing dimensionality reduction techniques. The
theorems in [38] and [40] show that if the (local) within-class
scatter matrices are invertible then the eigensubspace of the
corresponding generalized eigenequation is approximated by
the ridge regression subspace rather than the sparse subspace.
However, in SSS problems, the (local) within-class scatter
matrices are always not invertible. The frequently used method
for obtaining the sparse solutions is to directly add the
L1-norm term to produce sparse projections, but the effective-
ness of such methods may not be guaranteed since they operate
on the very high-dimensional image vectors. In addition, it is
still unclear for these sparse learning methods to provide a the-
oretical analysis that the learned sparse subspace approximates
the one spanned by the eigenvectors of the corresponding
eigenequation.

In order to enhance the discriminative ability of 2-D-based
projection methods, we propose a novel method called sparse
2-D projections (S2DP) for feature extraction. S2DP com-
bines the L1-norm elastic net regression and SVD to iter-
atively learn the sparse projections instead of solving the
generalized eigenequation. The essential difference between
the existing image-vector-based sparse learning methods
and S2DP is that our method directly operates on the
image matrix. The contribution of this paper is threefold.
First, a theoretical analysis between the well-known and
widely evaluated 2-D-based projection methods and the pro-
posed S2DP is conducted. We show that the subspace of
2-D-based projection methods can be approximated by the
sparse subspace of S2DP, which guarantees the discrimina-
tive ability of the S2DP. Second, by using the proposed
framework as a platform, some nonsparse image-based fea-
ture extraction methods can be easily extended to sparse
cases. Thus, the proposed framework generalizes the nonsparse
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2-D linear dimensionality reduction methods into sparse cases.
Third, we show that our theorems can also provide the
theoretical analysis for the vector-based methods such as SDA,
SLDA, and SLPE when each row/column of the weighted
image matrix is viewed as an independent pattern vector. Thus,
the theorems in [38] and [40] are the special cases in this paper.
Finally, the discriminative ability of the sparse projections
was evaluated in some well-known databases, which indicates
that the proposed S2DP is competitive over some 2-D-based
projection methods.

The rest of this paper is organized as follows. In Section II,
we briefly review 2DLPP and 2DLGEDA. S2DP algorithm
and related analysis are described in Section III. In Section IV,
experiments are carried out to evaluate our S2DP algorithm.
The conclusions are given in Section V.

II. 2-D FEATURE EXTRACTION METHODS

A. 2-D LPP

2DLPP works directly on 2-D image matrices and was
proposed in [25]–[27] as an extension of LPP. Assume that
Xi ∈ Rn1×n2 (i = 1, 2, . . . , m) are the 2-D image matrices
of the training images and n1 > n2. Suppose � is an n2 × d
matrix, where each column of � is an n2-dimensional unit
vector and d ≤ n2. The purpose of 2DLPP is to seek an
optimal projective matrix � = [ϕ1, ϕ2, . . . , ϕd ] and map a
2-D image from n1 × n2-dimensional image space into an
n1 × d-dimensional Euclidean space by the following linear
projection:

Yi = Xi� = Xi [ϕ1, . . . , ϕd ], (i = 1, 2, . . . , m). (1)

The objective function of 2DLPP is to preserve the 2-D
images’ local similarities in the projective space by solving
the following optimization problem:

arg min
�

m∑

i=1

m∑

j=1

∥∥Yi − Y j
∥∥2

F Wij

= arg min
�

m∑

i=1

m∑

j=1

∥∥Xi� − X j �
∥∥2

F Wij (2)

where ‖·‖F is Frobenius norm and Wij is the similarity defined
as

Wij =
⎧
⎨

⎩
exp

(
−‖Xi−X j ‖2

F
t

)
, Xi ∈ Nk (X j ) or X j ∈ Nk (Xi )

0, otherwise

where Nk(Xi ) denotes the k NNs of Xi , and t is the Gaussian
kernel parameter.

After some matrix analysis steps, the minimization problem
of (2) with a constraint [25]–[27] can be equivalently repre-
sented as

arg max
ϕ

ϕT X T (W ⊗ In1)Xϕ (3)

s.t. ϕT X T (D ⊗ In1)Xϕ = 1 (4)

where X = [X T
1 , X T

2 , . . . , X T
m]T is the 2-D image training

sample matrix of size mn1 × n2, and D is a diagonal matrix
whose entries are column or row sums of W ; In1 is an identity

matrix of order n1; operator ⊗ is the Kronecker product of the
matrices.

The optimal d projections that maximize the objective
function are computed by the maximum eigenvalue solutions
to the generalized eigenvalue problem [25]–[27]

X T (W ⊗ In1)Xϕ = λX T (D ⊗ In1)Xϕ (5)

where ϕ is the eigenvector corresponding to eigenvalue λ.
From the derivation of 2DLPP, it can be found that the main

idea of 2DLPP is to preserve the local similarities of the date
set, that is, keep the connected points stay as close together
as possible and thus the intrinsic local geometric structure
of the image manifold is preserved. However, since the label
information is not used, the performance of 2DLPP is limited.
Thus the following 2DLGEDA algorithm was proposed to
address this problem.

B. 2-D Local Graph Embedding Discriminant Analysis

The goal of 2DLGEDA [29] is to preserve the 2-D image
within-class compactness and maximize the between-class
separability. The main idea of 2DLGEDA is to use the label
information to construct the local within-class graph and local
between-class graph to reflect the compactness and separablity
of the image manifold. 2-D image within-class compactness
is characterized from the intrinsic graph by the term

Sw =
m∑

i=1

m∑

j=1

∥∥Yi −Y j
∥∥2

F Ww
i j =

m∑

i=1

m∑

j=1

∥∥Xi�−X j�
∥∥2

F Ww
i j

= 2tr(�T X T ((Dw − Ww) ⊗ In1)X�)

= 2tr(�T X T (Lw ⊗ In1)X�)

Ww
i j =

{
1, Xi ∈ N+

kw
(X j ) or X j ∈ N+

kw
(Xi )

0, otherwise
(6)

where tr(·) denotes the trace of a matrix and Dw is a diagonal
matrix whose entries are column or row sums of Ww; N+

k (Xi )
indicates the samples in the kw NNs of Xi in the same class,
and Lw = Dw − Ww .

Similarly, 2-D image between-class separability is charac-
terized from the between-class graph by the term

Sb =
m∑

i=1

m∑

j=1

∥∥Yi −Y j
∥∥2

F W b
i j =

m∑

i=1

m∑

j=1

∥∥Xi�−X j�
∥∥2

F W b
i j

= 2tr(�T X T ((Db − W b) ⊗ In1)X�)

= 2tr(�T X T (Lb ⊗ In1)X�)

W b
ij =

{
1, if (i, j) ∈ Pkb (ci ) or (i, j) ∈ Pkb (c j )
0, otherwise

(7)

where ci is the class label of Xi , and Pkb (ci ) is a set of data
pairs that are in the kb NN pairs among the set {(i, j)|i ∈
πci , j /∈ πci }, where πci denotes the index set of the samples
with label ci . Db is a diagonal matrix whose entries are column
or row sums of W b , and Lb = Db − W b .

The criterion of 2DLGEDA is formally similar to the
Fisher criterion since they are both Rayleigh quotients, and
the optimal projections can be obtained from solving the
generalized eigenequation

X T (Lb ⊗ In1)Xϕ = λX T (Lw ⊗ In1)Xϕ (8)



LAI et al.: SPARSE APPROXIMATION TO THE EIGENSUBSPACE FOR DISCRIMINATION 1951

where λ is the generalized eigenvalue corresponding to
the eigenvector ϕ. The optimal transformation matrix of
2DLGEDA is composed of the eigenvectors associated with
the d largest eigenvalues.

C. 2-D Feature Extraction Framework

2DLGEDA, 2DLPP, and the algorithms proposed in [28]
and [30] are graph-based representative methods of the
following general 2-D dimensionality reduction framework:

X T (Lb ⊗ I )Xϕ = λX T (Lw ⊗ I )Xϕ (9)

where Lb and Lw represent the local neighborhood graph (or
their graph Laplacian) defined in different ways. Note that the
notations in (9) are different from (8) since we use subscripts
instead of superscripts. When Lb = Lb and Lw = Lw,
(9) becomes (8), which is the generalized eigenequation of
2DLGEDA. When Lb = L and Lw = D, (9) becomes the
generalized eigenequation of 2DLPP. Many existing 2-D-based
methods such as those in [25]–[30] can also be described in
this framework.

There is an obvious disadvantage of the 2-D-based feature
extraction framework. Taking all the image pixels equally in
dimensionality reduction cannot explore the intrinsic informa-
tion since the 2-D images are of great information redun-
dancy. When using the 2-D-based methods for dimensionality
reduction, the whole 2-D image is projected to the nonsparse
optimal projection ϕ, that is, Yl = Xlϕ (l = 1, 2, . . . , m),
and the locality of the 2-D image manifold is preserved
in the low-dimensional subspace. Since the elements in ϕ
are nonzero, each pixel of the image matrix contributes to
the low-dimensional feature Yl . However, if ϕ is a sparse
vector, that is, ϕ = [0, . . . , ϕ̄i , 0, . . . , 0, ϕ̄ j , 0, . . . , 0]T (we
take two nonzero elements as an example), then Yl = Xlϕ =
Xl [0, . . . , ϕ̄i , 0, . . . , 0, ϕ̄ j , 0, . . . , 0]T shows that only the i th
and j th column features contribute to Yl . If the sparseness and
locality preserving criteria (or local discriminative criteria) are
combined, some column features of the 2-D images in the
local neighborhood can be preserved in the low-dimensional
subspace. Thus, the following proposed S2DP algorithm can
extract the latent intrinsic features embedded in the image
matrices so as to overcome this disadvantage in the other 2-D
feature extraction methods.

The following section describes how the proposed method
addresses the limitations of the 2-D-based feature extraction
framework.

III. S2DP

A. Motivations of S2DP

How to obtain a good classification result is an important
issue in image recognition and computer vision. However,
images contain much redundant information, and the dis-
criminative information is not decided by all the pixels. As
discussed in Section II-C, this paper aims to extract the
latent intrinsic discriminative features from the image matri-
ces to increase the classification performance and enhance
the robustness of the algorithm. Recent research [31]–[33],
[35]–[38] indicates that introducing the L1-norm can enhance

discriminative feature selection and also avoid overfitting
and thus improve the prediction accuracy. Introducing the
L1-norm regression to learn the sparse discriminant projec-
tions seems to be a good choice to accomplish the purpose
desired. Thus, the natural idea is to append the sparseness
constraint to the existing 2-D-based method and guarantee
the effectiveness of the sparse projections from the theoretical
aspect.

B. Model of S2DP

The problem at hand is to find the optimal sparse projections
that approximate the optimal (discriminant) vectors of the
generalized eigenequation of (9). Our idea is to impose a
sparseness constrained condition in (9) as a general frame-
work. The model of S2DP is given as follows:

{
X T (Lb ⊗ I )Xϕ = λX T (Lw ⊗ I )Xϕ
s.t. Card(ϕ) ≤ K

(10)

where ϕ is the column vector corresponding to eigenvalue λ
and Card(ϕ) denotes the number of nonzero elements of ϕ.

The only difference between (9) and (10) is that a sparseness
constraint is imposed in (10). Directly solving the generalized
eigenfunction of (9) cannot obtain the sparse projections.
Therefore, in order to obtain the sparse solutions by using
L1-norm regression, we should rewrite the above equation
X T (Lb⊗I )Xϕ = λX T (Lw⊗I )Xϕ. The following subsections
develop some properties about the Kronecker product of the
graph Laplacian matrices, which help reduce the computation
cost and give representations of the two terms X T (Lb ⊗ I )X
and X T (Lw ⊗ I )X in (10).

C. Idea and Background for Obtaining the Sparse Projections

Directly solving the generalized eigenequation (10) with
a sparseness constraint is a difficult problem, but we can
represent and transfer this problem by using the L1-norm
regression to obtain the sparse subspace, which also approx-
imates the subspace spanned by the generalized eigenvectors
associated with the larger (or smaller) eigenvalues. Thus, the
discriminative abilities or locality preserving abilities can be
maintained by the sparse projections.

SDA [37] aims to minimize the regression error of the
class index matrix by iteratively using the L1-norm regression
method and provides us with the most direct idea for obtaining
the sparse projections. However, a significant drawback of
SDA is that it is difficult to conduct a theoretical analysis
on the connections of the sparse projections of SDA and the
dense projections of LDA.

In [38] and [40], a theoretical analysis was conducted
on the relationships between the iterative ridge regres-
sion subspace and the corresponding eigensubspace. Then
L1-penalized term was directly added to the iterative ridge
regression procedures, in which no theory is presented to
analyze the latent relationship between the ridge regression
and the complex norm regression. In addition, the proof of the
theorems in [38] and [40] needs a strict assumption that vector-
based within-class scatter matrix must be positive definite.
This assumption usually cannot be satisfied because of SSS
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problems. Under the background of 2-D image-based methods,
however, this assumption or condition can be satisfied natu-
rally. This is the other reason why the 2-D-based theoretical
analysis was examined in this paper. Our theoretical analysis
presented in Section III-E shows that the theorems in [38] and
[40] can be regarded as a special case of the Theorem 2 and
is represented as the propositions.

As seen from Sections III-B and III-E, the most essential
difference between SDA and the proposed framework is that
the proposed sparse projection framework directly works on
the image matrices which construct the corresponding general-
ized eigenequation. It will be shown that the sparse projections
approximate the dense projections of the corresponding
2-D projection methods. On the one hand, the connections
of theoretical analysis between dense projections and sparse
projections are bridged. On the other hand, the effectiveness
of the sparse projections of S2DP can be guaranteed since
the sparse projection subspace approximates the dense
projection subspace and the effectiveness of 2-D-based dense
projection methods have been widely evaluated. Since the
most important factors are selected by sparse regression for
discrimination, the sparse feature selection can enhance the
performance of the algorithm.

D. Singular Value Decomposition on Graph Laplacian With
Kronecker Product

The Kronecker product has the following properties.
Lemma 1: [42] (A ⊗ B)(C ⊗ D) = AC ⊗ B D.
Corollary 1: (A ⊗ B)(C ⊗ D)(E ⊗ F) = AC E ⊗ B DF .
Corollary 2: (A ⊗ I )(C ⊗ I )(E ⊗ I ) = AC E ⊗ I .
With the above preparation, we derived theorem 1.
Theorem 1: Denote the singular value decomposition of

the symmetric graph Laplacian L∗ as L∗ = U DU T , then
L∗ ⊗ I = (U DU T ) ⊗ I = (U D1/2 ⊗ I )((U D1/2)T ⊗ I ).

From Theorem 1, instead of directly performing the SVD on
the large-size graph Laplacian matrix L∗ ⊗ I , we can perform
the SVD on the small-size graph Laplacian matrix L∗, and
then perform Kronecker products on them, which will greatly
save the computational cost.

After we perform SVD on the graph Laplacian matrices,
we can directly give the decompositions of X T (Lb ⊗ I )X and
X T (Lw ⊗ I )X in (9) and denote them as

Mw = X T (Lw ⊗ I )X = Fw FT
w

= X T (Uw D1/2
w ⊗ I )((Uw D1/2

w )T ⊗ I )X (11)

Mb = X T (Lb ⊗ I )X = Fb FT
b

= X T (Ub D1/2
b ⊗ I )((Ub D1/2

b )T ⊗ I )X (12)

where Fw = X T (Uw D1/2
w ⊗ I ) and Fb = X T (Ub D1/2

b ⊗ I ).

E. Optimal Sparse Solutions

Based on the idea mentioned in Sections III-A and III-C, the
key problem for obtaining the sparse solutions is to transfer the
generalized eigenequation with sparseness constraint into the
L1-norm regression form and guarantee that the optimal eigen-
subspace spanned by the generalized eigenvectors associated
with the larger (or smaller) eigenvalues of (9) are optimally

approximated by the learned sparse subspace. To prove the
theorem, we need the following conclusions.

Lemma 2: For any column orthogonal m×d (m > d) matrix
V satisfying V T V = I , V can be represented as V = AU T ,
where m × d matrix A has the orthogonal columns and U is
an arbitrary orthogonal d × d matrix.

Proof: V T V = I = U IU T = U AT AU T = (AU T )T

AU T.
Lemma 3: Let M be an m × m symmetric positive

semidefinite matrix; if V = arg max
V T V =I

T r(V T MV ), then

for any arbitrary orthogonal matrix U , there exists m × d
matrix A∗ such that V = A∗U T and A∗ satisfies A∗ =
arg max

AT A=I
Tr(AT M A).

Proof: From Lemma 2, we know that there are Uand A∗
satisfying V = A∗U T ; since U is the orthogonal matrix, let
V = AU T , it is easy to see that the optimization problem of
arg max

V T V =I
T r(V T MV ) can be converted to

max T r [(AU T )T M(AU T )] s.t. (AU T )T (AU T ) = I
⇔ max T r(AT M A) s.t. AA = I.

Therefore, if V = A∗U T be the optimal solution of arg
max

V T V =I
T r(V T MV ), then A∗ also satisfies the second opti-

mization problem, that is, A∗ = arg max
AT A=I

T r(AT M A).

Lemma 4: Assume that the Cholesky decomposition of the
positive definite matrix Mw is Mw = GwGT

w, and denote
the singular value decomposition of G−1

w MbG−T
w = V̄ �̄V̄ T ,

where �̄ is an N × N diagonal matrix of eigenvalues with
decreasing order, then G−T

w V̄ is the eigenvector matrix of the
generalized eigenfuction (9) corresponding to the decreasing
ordered eigenvalues.

Proof:

G−1
w MbG−T

w = V �V
T ⇒ G−T

w G−1
w MbG−T

w = G−T
w V �V

T

⇒ (GwGT
w)−1 MbG−T

w V = G−T
w V �

⇒ (Mw)−1 MbG−T
w V = G−T

w V �.

From Lemma 4, we directly have Corollary 3.
Corollary 3: The first d eigenvectors corresponding to the

largest eigenvalues of the generalized eigenfuction (9) are
exactly the first d columns of G−T

w V .
With the above preparation, we derived Theorem 2 as the

main theory in this paper. We only give the theorem and its
proof in the case of the eigenvectors corresponding to the
larger eigenvalues with (9). For the case of the eigenvectors
corresponding to the smaller eigenvalues, it is easy to obtain
similar results in the same way as in this paper.

Theorem 2: Since Mw is positive definite, its Cholesky
decomposition can be presented as Mw = GwGT

w, where
Gwis an n2 × n2 lower triangular matrix with full rank. Let
� = [ϕ1, ϕ2, . . . , ϕd ] be the eigenvectors of (9) associated
with the first d largest eigenvalues. Without misleading, we
still let P = [p1, p2, . . . , pd ] and Q = [q1, q2, . . . , qd ] be the
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optimal solutions to the following regression problem:

(P, Q) = arg min
P,Q

mn1∑

i=1

∥∥∥G−1
w Fb(:, i) − P QT Fw(:, i)

∥∥∥
2

+α

d∑

j=1

qT
j Mwq j + β

d∑

j=1

∥∥q j
∥∥2 + γ

d∑

j=1

∣∣q j
∣∣ (13)

s.t. PT P = I (14)

where α ≥ 0, β ≥ 0, γ ≥ 0, Fb(:, i) and Fw(:, i) are the
i th column of Fb and Fw , and ‖·‖, |·| denote the L2- and
L1-norm, respectively. Then the columns of Q span the linear
space approximating � when β → 0+ and γ → 0+.

Proof: The proof of the theorem was divided into two
steps, and the representation of the sparse subspace Q was
obtained by using the generalized eigenvectors of (9), that
is, �.

Step 1: Suppose P is given.

If P is fixed, the update of Q is a regression-type problem.
There exists an orthogonal matrix P⊥ such that [P, P⊥] is
n2 × n2 column orthogonal matrix. The first part of (13) can
be rewritten as

mn1∑

i=1

∥∥∥G−1
w Fb(:, i) − P QT Fb(:, i)

∥∥∥
2 =

∥∥∥G−1
w Fb − P QT Fb

∥∥∥
2

=
∥∥∥FT

b G−T
w − FT

b Q PT
∥∥∥

2

=
∥∥∥FT

b G−T
w [P, P⊥] − FT

b Q PT [P, P⊥]
∥∥∥

2

=
∥∥∥[FT

b G−T
w P, FT

b G−T
w P⊥] − [FT

b Q PT P, FT
b Q PT P⊥]

∥∥∥
2

=
∥∥∥[FT

b G−T
w P − FT

b Q PT P, FT
b G−T

w P⊥ − 0]
∥∥∥

2

=
∥∥∥FT

b G−T
w P − FT

b Q
∥∥∥

2 +
∥∥∥FT

b G−T
w P⊥

∥∥∥
2

=
d∑

j=1

∥∥∥FT
b G−T

w p j − FT
b q j

∥∥∥
2 +

∥∥∥FT
b G−T

w P⊥
∥∥∥

2

since for fixed P ,
∥∥FT

b G−T
w P⊥

∥∥2
is a constant and can be

ignored. We have the following regression problem to compute
the sparse matrix Q:

arg min
Q

⎛

⎝
d∑

j=1

∥∥∥FT
b G−T

w p j − FT
b q j

∥∥∥
2 +α

d∑

j=1

qT
j Mwq j

+β

d∑

j=1

∥∥q j
∥∥2 + γ

d∑

j=1

∣∣q j
∣∣
⎞

⎠ (15)

or

arg min
Q

(∥∥∥FT
b G−T

w P − FT
b Q

∥∥∥
2 + α

∥∥∥GT
w Q

∥∥∥
2

+β ‖Q‖2 + γ

d∑

j=1

∣∣q j
∣∣
⎞

⎠ . (16)

Let Y =
[

FbG−T
w P

0n2×d

]
and




X =
[

Fb√
αGT

w

]
, then (15) and (16)

become the elastic net regression problem

arg min
Q

⎛

⎝
∥∥∥Y − 


X Q
∥∥∥

2 + β ‖Q‖2 + γ

d∑

j=1

∣∣q j
∣∣

⎞

⎠. (17)

When taking the limit of the above optimal problem in (16)
or (17), that is, β → 0+, γ → 0+, we have

arg min
Q

⎛

⎝
d∑

j=1

∥∥∥FbG−T
w p j − Fwq j

∥∥∥
2 +α

d∑

j=1

qT
j Mbq j

⎞

⎠.

(18)

By requiring the derivative of the above optimal problem
with respect to qi to be 0, we get

qi = (Mb + αMw)−1 MbG−T
b pi (19)

or in the matrix form

Q = (Mb + αMw)−1 MbG−T
b P. (20)

Step 2: Suppose Q is given. In this step, the proof is similar
to the proof in [34] and [35] but with some variations. For
the completeness of the proof and for drawing the following
corollaries and conclusions, it is necessary for us to restate it
more clearly.

If Q is fixed, then the other terms in (13) are constants, and
the update of P becomes a Procrustes problem [43]

mn1∑

i=1

∥∥∥G−1
w Fb(:, i) − P QT Fb(:, i)

∥∥∥
2

=
∥∥∥G−1

w Fb − P QT Fb

∥∥∥
2

=
∥∥∥FT

b G−T
w − FT

b Q PT
∥∥∥

2

= tr(FT
b G−T

w G−1
w Fb + FT

b QQT Fb) − 2tr(QT Fb FT
b G−T

w P)

s.t. PT P = I. (21)

Thus, the update of P minimizing (21) is equivalent to
maximizing the following problem:

tr(QT Fb FT
b G−T

w P) = tr(QT MbG−T
w P). (22)

Substituting (20) into (22) gives

max tr{PT G−1
w Mb(Mb + αMw)−1 MbG−T

w P} (23)

subject to PT P = I .
The middle term in (23) can be rewritten as

G−1
w Mb(Mb + αMw)−1 MbG−T

w

= G−1
w MbG−T

w (G−1
w MbG−T

w + α I )−1G−1
w MbG−T

w . (24)

Denote the SVD of G−1
w MbG−T

w = V �V T , where � is a
diagonal matrix with decreasing eigenvalues. From (24), we
can conclude that the columns of V are the eigenvectors of
matrix G−1

w Mb(Mb + αMw)−1Mb G−T
w .

On the other hand, the update of P minimizing (21) with
the constraint of PT P = I means that P is orthonormal in
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the columns. Thus, the optimal P can also be directly obtained
from SVD

G−1
w Fb FT

b Q = G−1
w Mb Q = V DU T. (25)

According to Lemmas 2 and 3, the optimal Pof (23) with the
constraint of PT P = I satisfies

P = V U T. (26)

Substituting P = V U T into (20) gives

Q = (Mb + αMw)−1 MbG−T
w P

= (Mb + αMw)−1 MbG−T
w V U T

= G−T
w (G−1

w MbG−T
w + α I )−1G−1

w MbG−T
w V U T

= G−T
w (V �V T + α I )−1V �V T V U T

= G−T
w V (� + α I )−1�U T. (27)

From Lemma 4 or Corollary 3, it should be noted that the
first d leading eigenvectors of the generalized eigenvalue
problem of (9) are exactly the first d columns of � = G−T

w V .
Therefore, for each iteration, we have

Q = �(� + α I )−1�U T. (28)

Thus, when β → 0+ and γ → 0+, the columns of Q
approximate the linear subspace � in each iteration.

According to Corollary 3 and the proof of Theorem 2, we
have the following conclusions.

Corollary 4: When d < n2, the first d eigensubspace
� = [ϕ1, ϕ2, . . . , ϕd ] is approximated by the first d sparse
columns of Q(:, 1 : d) = [q1, q2, . . . , qd ].

From Theorem 2, it is easy to have the following corollary.
Corollary 5: When β = 0 and γ = 0, the linear subspace

spanned by the column vectors of � is the same linear
subspace as spanned by the columns of Q.

In fact, the vector-based discriminant analysis method is
a special form of the image-matrix-based method if we view
each column/row of the matrices Fw and Fb as an independent
pattern vector. With the same way as the theoretical connec-
tions between image-vector-based LDA and 2DLDA presented
in [44], it is easy to have the following propositions from the
proof of Theorem 2.

Proposition 1: If each column (row) of the matrices Fw

and Fb is regarded as an independent high-dimensional pattern
vector, and vector-based scatter matrix Mw is positive definite,
with the same notations as in Theorem 2, when β → 0+ and
γ → 0+, the vector-based sparse subspace Q will span the
linear space approximating �.

Proposition 2: With the same assumptions and notations as
in Proposition 1, when β = 0 and γ = 0, the linear subspace
spanned by the columns of � is the same linear subspace as
spanned by the columns of Q.

When β = 0 and γ = 0, it is easy to find that Proposition 2
exactly is the same as the theorems in [38] and [40] when
each row (or column) of the matrices Fw and Fb is viewed
as an independent pattern vector. Thus, we give a more
general theory that not only suits 2-D methods but can also
be specialized to vector-based methods and thus generalizes
the vector-based theorems in [38] and [40] into the sparse

case and 2-D case. Therefore, Propositions 1 and 2 provide
the theoretical guarantee for the effectiveness of SDA, SLDA,
and SLPE when vector-based scatter matrix Mw is positive
definite.

F. Algorithm Steps

From the proof of Theorem 2, it is easy to get the algorithm
details of S2DP for feature extraction, which are described in
the following steps.

Step 1: Construct the graph Laplacian matrices Lw and Lb.
Step 2: Perform SVD decomposition on Lw and Lb, obtain

Fw = X T (Uw D1/2
w ⊗I ) and Fb = X T (Ub D1/2

b ⊗I ).
Step 3: Compute Mw , Mb , and the Cholesky decomposition

of Mw = GwGT
w.

Step 4: Generate a random matrix P and orthogonalize its
columns.

Step 5: Iterate until converges or achieve the number of
iterations set by users.

Step a: For the given matrix P , solve the elastic net
problem of (17).

Step b: Compute the SVD decomposition
G−1

w Mb Q = V DU T and update P = V U T .

Step 6: Project the samples on the low-dimensional sparse
subspace Q(1 : d) = [q1, q2, . . . , qd ] to obtain the
low-dimensional feature matrices Yi = Xi Q (i =
1, 2, . . . , m).

Once the feature matrix Yi (where Yi = [yi1, yi2, . . . , yid ]
and yi j ( j = 1, 2, . . . , d) is the column vector in the low-
dimensional feature matrix) is obtained, it can be transformed
to be a vector using the formulation Y ′

i = [yT
i1, yT

i2, . . . , yT
id ]T ,

and then a desired classifier [such as the NN classifier or
support vector machine (SVM)] can be used for classification
on the vector Y ′

i (i = 1, 2, . . . , m).

G. Fast S2DP

In the above sections the essence of the S2DP algorithm
is revealed and a general method for obtaining the optimal
sparse projections was proposed. However, direct regression
on the large-size matrices Fw = X T (Uw D1/2

w ⊗ I ) and Fb =
X T (Ub D1/2

b ⊗ I ) in the iterations is very time-consuming since
they are with the size n2 × n1m. In this section, we describe
the fast version of S2DP.

Denote the SVD of the following two scatter matrices as:

Mw = F̃w F̃T
w =

(
Ũw D̃

1
2
w

) (
Ũw D̃

1
2
w

)T

(29)

Mb = F̃b F̃T
b =

(
Ũb D̃

1
2
b

) (
Ũb D̃

1
2
b

)T

(30)

where F̃w = Ũw D̃1/2
w and F̃b = Ũb D̃1/2

b . It is clear that the
size of the matrices F̃w and F̃b is n2 × n2, which is far less
than the size of Fw and Fb. It is easy to see that when the
matrices Fw and Fb are replaced by F̃w and F̃b, Theorem 2
is also true. Thus we obtain the fast version of S2DP.
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Fig. 1. Sample images of one person in the Yale database.

H. Comparisons of the Computational Complexity and Space
Complexity

Assume that there are m training samples, and the size of
the image matrix is n × n (i.e., n1 = n2 = n). The main
computations of the sparse learning methods lie in the iteration
procedures. For the vector-based SPCA, SDA, SLDA, and
SLPE, the complexity is O(tn6) at most, where t denotes
the iteration number. However, for the image-based S2DP,
the computational complexity in the iteration procedures is
O(tn3). It is clear that the computational complexity of S2DP
is far less than that of the existing vector-based sparse learning
methods. Since the elastic net and SVD are used in the
iteration procedures of S2DP, S2DP is more time consuming
than 2-D-based methods, such as 2DPCA and 2DLPP, whose
computational complexities in solving the generalized eigen-
funtion need only O(n3).

For the vector-based sparse projection learning methods,
that is, SPCA, SDA, SLDA, and SLPE, the space complexity
needs O(n4). However, the S2DP algorithm framework can
work on the 2-D scatter matrix and needs only O(n2). In
this way, S2DP greatly saves the memory cost, which is the
same as the other 2-D-based dense projection methods such
as 2DPCA, 2DLDA, and 2DLPP.

IV. EXPERIMENTS AND ANALYSES

To evaluate the proposed S2DP algorithm, we compared it
with 2DPCA, 2DLDA, 2DLPP, and 2DLGEDA on Yale, AR,
FERET, and CMU PIE face databases. The Yale database was
used to examine the performance when both facial expressions
and illumination were varied. The AR face database was
employed to test the performance of S2DP when there was
a variation in time, facial expressions, and lighting conditions.
The FERET face database was used to evaluate the perfor-
mance of S2DP in a larger number of individuals with vari-
ations in facial expression, illumination, and pose. The CMU
PIE face database was used to evaluate the performance of
these methods when facial expressions and lighting conditions
varied in large ranges.

A. Experiments on Yale Face Database

The Yale face database (http://www.cvc.yale.edu/projects/
yalefaces/yalefaces.html) contains 165 images of 15 individu-
als (each person providing 11 different images) with various
facial expressions and lighting conditions. In our experiments,
each image was manually cropped and resized to 50 ×
40 pixels. Fig. 1 shows sample images of one person in the
Yale database.

TABLE I

RECOGNITION RATES (PERCENTAGE) AND THE CORRESPONDING

DIMENSIONS OF THE FIVE METHODS ON THE YALE FACE DATABASE

Methods 2DPCA 2DLDA 2DLPP 2DLGEDA S2DP

Recognition
rate (%)

88.00 88.00 92.00 90.67 97.33

Dimension 40×14 40×3 40×9 40×11 40×8

1) Properties of the S2DP:
a) Robustness of the S2DP: In the first experiment, we

tested the robustness of the proposed S2DP. The first four
images (i.e., center-light, with glasses, happy, left-light) were
used for training, and other two images per individual were
randomly selected and used for validation. The remaining
five images were used for test. In the experiments, the left-
light, right-light, and surprised images can be viewed as
outliers, since the distances among the three images and
the remaining images are far larger than that of the others.
Therefore, there were outliers in the training, validation, and
test set. For feature extraction, we used 2DPCA, 2DLDA,
2DLPP, 2DLGEDA, and the proposed S2DP. Regarding the
parameters in 2DLPP, 2DLGEDA, and S2DP, we set the
Gaussian kernel parameter t = ∞ for simplicity (i.e., 0–1
pattern is used in all the methods) and thus reduce the selection
of the parameters. In the experiments, the neighborhood k were
selected from the set {1, 2, 4, . . . , m−1}, cardinality K and
dimension d were selected from the set {1, 2, 3, . . . , n2}, and
the weighted parameters α and β were selected from the set
{0.01, 0.1, 1, 10, 10, 100} by using the validation set. γ is not
necessary to select because it can be automatically determined
by the elastic net algorithm [31]. The optimal parameters of
S2DP (i.e., k = 5, α = 1, β = 100, K = 6, and d = 8)
corresponding to the best performance of the validation set
were used in the algorithm to learn the projections for feature
extraction and recognition on the test set.

The recognition rates with the NN classifier and the cor-
responding dimensions of the five methods are shown in
Table I. Fig. 2(a) shows the variations of the dimensions
versus the recognition rates. Note that the dimension marked
on the horizontal abscissa in the figures means the number
of the projections. The recognition rates indicate that the
performance of S2DP is more robust than the other methods
under the facial expressions and illumination variations. The
reason is that the sparse projection method selects the most
important discriminative factor to form the sparse projections
for dimensionality reduction and thus reduces the effect of
facial expressions and illumination variations to a certain
extent.

From the viewpoint of feature extraction and dimension-
ality reduction, the robustness comes from the sparsity of
the projections. When a face image Xi with strong illu-
mination is projected to the sparse axis ϕ (i.e., Yi =
Xiϕ = Xi [0, . . . , ϕi , 0, . . . , 0, ϕ j , 0, . . . , 0]T ), most of the
elements in image matrix Xi have no contributions to the low-
dimensional feature Yi . The sparse projection performs as the
“filter” and can greatly reduce the negative effect as a result
of the facial expressions and illumination variations. Thus, the
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Fig. 2. (a) Recognition rate versus corresponding dimension of the five
methods. (b) Variation of cardinality (i.e., K ), dimension, and recognition
rate of S2DP. (c) Recognition rate versus α. (d) Recognition rate versus β.
(e) Recognition rate versus the neighborhood k. Note that the 1NN was used
as the classifier. (f) Average recognition rates (%) versus dimensions on the
Yale face database. (Classifier: 1NN).

sparse projections can obtain good performance when using
low-dimensional features for classification.

b) Effectiveness and efficiency of S2DP against the
vector-based sparse subspace learning algorithms: The recog-
nition rates of S2DP, SPCA, and SLDA are 97.33%, 87.27%,
and 85.45%, and the computational time [CPU: Intel(R) Core,
2.67 GHz; RAM: 4 GB] cost in training is 5.748 (1.607 for
fast version of S2DP), 93.683, and 43.588 s, respectively.
Thus, the vector-based sparse subspace learning algorithms
achieve only lower recognition rates and need more time
in training than S2DP. Although S2DP is far more efficient
than the vector-based sparse subspace learning methods, it
still costs more time in training procedures than the other
2-D-based methods such as 2DPCA, 2DLPP, and 2DLGEDA
which cost less than 1 s in average for training. In other
words, this experiment supports the theoretical analyses on
the computational complexity presented in Section III-H.
Since S2DP is in essence a 2-D-based method and since
the vector-based sparse subspace learning methods are time
consuming and perform poorly to the 2-D methods, we focus
only on comparing the S2DP with the other 2-D methods in
the following experiments.

TABLE II

AVERAGE RECOGNITION RATES (PERCENTAGE), STANDARD DEVIATION,

AND THE CORRESPONDING DIMENSIONS OF THE FIVE METHODS ON THE

YALE FACE DATABASE

Classifiers 2DPCA 2DLDA 2DLPP 2DLGEDA S2DP

1NN
84.23
±3.58

84.16
±2.87

84.47
±5.43

85.43
±4.63

88.21
±3.38

40×36 40×14 40×10 40×26 40×16

3NN
83.67
±3.31

83.86
±3.25

82.62
±4.89

84.38
±7.85

86.14
±2.78

40×15 40×10 40×12 40×40 40×11

MD
84.20
±2.47

84.70
±3.65

84.72
±4.63

84.13
±4.88

86.17
±3.21

40×11 40×35 40×18 40×16 40×6

SVM
86.16
±2.45

86.38
±3.89

86.86
±4.41

87.97
±4.87

89.53
±1.72

40×21 40×16 40×8 40×24 40×7

c) Influence of the parameters: In order to further inves-
tigate the properties of the S2DP algorithm, the recognition
rates of S2DP versus the variations of cardinality (i.e., K ) and
dimension are shown in Fig. 2(b), which indicates that S2DP
can achieve the top recognition rate with only six nonzero
elements (i.e., Card(ϕ) = 6). Fig. 2(c)–(e) also show that
S2DP is robust to the parameters α, β, k, respectively. That is,
the top recognition rates of S2DP have no significant variations
when different parameters are used. Similar properties also
exist in other databases.

2) Performance of the S2DP: In this section, we evalu-
ate the performance of the proposed method using the first
10 images of each person. Two images per individual were
randomly selected as the training set and validation set,
respectively. The remaining six images of each individual were
used for test. For each run, the parameters were selected by
using the same method as in Section IV-A (k = 6, α = 0.01,
β = 0.1, and K = 7 were the optimal parameters of S2DP
in average). The experiments were independently repeated
10 times for avoiding the bias of the random experiments,
and four classifiers, that is, 1NN classifier, 3NN classifier,
minimum distance (MD) classifier, and SVM with linear
kernel, were used for classification. The average recognition
rate of each method and the corresponding dimension are given
in Table II. The results of the average recognition rates (%)
by using 1NN as the classifier versus the different dimensions
are shown in Fig. 2(f). Experimental results show that S2DP
performs better than the other 2-D methods with different
classifiers. On the one hand, since S2DP introduces the elastic
net or L1-norm regression to perform feature selection, the
most important features/factors are selected to form the sparse
projections according to the criterion. On the other hand, since
the 2-D images are of great information redundancy, the low-
dimensional features obtained from the dense projections still
contain much redundant information, which degrades their
performance. Thus S2DP is far more effective than other
methods.

B. Experiments on AR Face Database

The AR face database [45] contains over 4000 color face
images of 126 people (70 men and 56 women), including
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Fig. 3. Sample images of one person on the AR face database.

TABLE III

RECOGNITION RATES (PERCENTAGE) AND THE CORRESPONDING

DIMENSIONS OF THE FIVE METHODS ON THE AR FACE DATABASE

Classifiers 2DPCA 2DLDA 2DLPP 2DLGEDA S2DP

1NN
58.13 56.98 58.13 58.33 62.08

20×19 20×17 20×16 20×14 20×16

3NN
58.13 57.71 58.02 58.13 60.62

20×19 20×16 20×17 20×14 20×17

MD
54.90 55.73 51.98 56.77 58.13

20×20 20×18 20×19 20×20 20×19

SVM
60.31 58.96 61.25 61.15 65.10

20×18 20×20 20×19 20×20 20×18

frontal views of faces with different facial expressions, lighting
conditions, and occlusions. The pictures of 120 individuals
(65 men and 55 women) were taken in two sessions (separated
by 2 weeks), and each section contained 13 color images.
Twenty images of these 120 individuals were selected and
used in the two experiments. The face portion of each image
was manually cropped and then normalized to 25 × 20 pixels
for computational efficiency. The sample images of one person
are shown in Fig. 3.

In order to test the performance of the 2-D methods when
there were variations in time, facial expressions, lighting
conditions, and occlusions, 10 images in the first section (the
images in the first line in Fig. 3) were used as the training set
and two images in the second section (images in the second
line in Fig. 3) were randomly selected and used as the vali-
dation set. The remaining images were used for the test. The
method for selecting the optimal parameters in each algorithm
was the same as in Section IV-A The optimal parameters of
S2DP were set as k = 6, α = 0.01, β = 0.01, and K = 8. The
top recognition rates and the corresponding dimensions with
four classifiers are shown in Table III. The recognition rates
(%) of 1NN versus the dimensions are shown in Fig. 4(a).
As seen from Table III and Fig. 4(a), the top recognition
rate of S2DP is the highest. The experiment also supports
our experimental analysis mentioned above and suggests that
S2DP is more robust than 2DPCA, 2DLDA, 2DLPP, and
2DLGEDA on facial expressions, lighting conditions, and time
variations.

C. Experiments on FERET Face Database

The FERET face database is a result of the FERET program,
which was sponsored by the US Department of Defense
through the Defense Advanced Research Projects Agency
(DARPA) Program [46]. It has become a standard database
for testing and evaluating state-of-the-art face recognition
algorithms. The proposed method was tested on a subset of
the FERET database. This subset includes 1400 images of 200

TABLE IV

RECOGNITION RATES (PERCENTAGE) AND CORRESPONDING DIMENSION

OF THE FIVE METHODS ON THE FERET FACE DATABASE

Classifiers 2DPCA 2DLDA 2DLPP 2DLGEDA S2DP

1NN
47.00 43.00 50.00 51.50 57.00

40×37 40×16 40×11 40×12 40×19

3NN
40.50 42.00 49. 50 50.00 55.00

40×30 40×39 40×39 40×39 40×7

MD
33.50 34.00 51.00 42.50 54.50

40×36 40×39 40×39 40×30 40×6

SVM
45.00 43.50 57.00 53.00 59.50

40×37 40×9 40×11 40×6 40×6

individuals (each individual has seven images) and involves
variations in facial expression, illumination, and pose. In the
experiment, the facial portion of each original image was
automatically cropped based on the location of the eyes, and
the cropped images was resized to 40 × 40 pixels. The sample
images of one person are shown in Fig. 5.

In the experiments, in order to test the performance of the
proposed method in the variations of facial expression and
lighting condition, five images were selected from the image
gallery of each individual to form the training sample set, and
one image per individual was used for validation. The remain-
ing images were used for the test. The method in selecting
the optimal parameters was the same as in Section IV-A. The
optimal parameters of S2DP were set as k = 6, α = 0.01,
β = 0.01, and K = 10. The maximal recognition rates
of different methods by using the four classifiers and the
corresponding dimensions are given in Table IV. The recog-
nition rate curves using 1NN classifier versus the variation of
dimensions are shown in Fig. 4(b). Table IV and Fig. 4(b)
show that S2DP obtains the highest recognition rate. With the
SVM as the classifier, S2DP can obtain higher classification
accuracy than the other classifiers.

D. Experiments on CMU PIE Face Database

The CMU PIE database [47] contains 68 people, and each
person has 13 pose variations that ranged from right-to-left
profile images and 43 different lighting conditions, which have
21 flashes with ambient light on or off. Twenty-three frontal-
view images of each person were used in our experiments.
Original images were aligned, cropped, and then resized to
46 × 46 pixels. Fig. 6 shows some sample images in the CMU
PIE face database. This database was used for evaluating the
performance of different methods when the face poses and
lighting conditions varied in large ranges.

In the experiments, 10 and 2 images were randomly selected
from each individual for training and validation, respectively,
while the remaining images of each individual were used for
the actual test. For each run, the parameters in each algorithm
were selected using the same method as in Section IV-A
(k = 10, α = 0.01, β = 0.01, and K = 30 were the
optimal parameters of S2DP on average). The experiments
were repeated 20 times for avoiding the bias of the random
experiments. The average recognition rates and the corre-
sponding dimensions with different classifiers are reported
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Fig. 4. Recognition rates (%) versus the dimensions on the (a) AR, (b) FERET, and (c) CMU PIE face databases, respectively. Classifier: 1NN.

Fig. 5. Sample images of one person on FERET face database.

Fig. 6. Some sample images of one person in the CMU PIE face database.

TABLE V

AVERAGE RECOGNITION RATES (PERCENTAGE), STANDARD DEVIATION,

AND THE CORRESPONDING DIMENSIONS OF THE FIVE METHODS ON THE

CMU PIE FACE DATABASE

Classifiers 2DPCA 2DLDA 2DLPP 2DLGEDA S2DP

1NN
57.11
±6.61

65.46
±4.04

56.55
±5.87

67.13
±5.46

70.12
±4.53

46×46 46×20 46×46 46×20 46×30

3NN
56.03
±6.88

64.72
±4.21

56.38
±5.83

67.00
±5.69

68.24
±4.57

46×42 46×21 46×41 46×40 46×35

MD
25.58
±7.63

62.72
±5.74

45.77
±6.99

63.18
±6.01

67.42
±4.66

46×42 46×40 46×43 46×41 46×41

SVM
56.27

±13.22
65.38
±8.48

60.41
±13.54

66.32
±7.81

69.55
±4.68

46×14 46×35 46×28 46×28 46×28

in Table V. The recognition rates using 1NN classifier versus
the dimensions of each method are plotted in Fig. 4(c).

As seen from Fig. 6, the face poses and lighting conditions
varied in large ranges. In this case, the unsupervised methods
(i.e., 2DPCA and 2DLPP) obtained bad results. By using the
label information, 2DLDA, 2DLGEDA, and S2DP obtained
better performance. By introducing the L1-norm elastic net
regression, S2DP can select the most important discriminative
factors to form the sparse projections, thus the recognition
rates of S2DP were significantly higher than the recognition
rates of other methods. The only difference between the S2DP
and the other 2-D-based methods is that S2DP introduces
L1-norm for discriminative projection learning. This indicates
that using the sparse projections or introducing the L1-norm

for discriminative projection learning can greatly improve the
robustness for the variations of facial expressions and lighting
conditions. The results are consistent with the experiments
mentioned above. Due to the large variations in lighting
conditions and poses, different classifiers perform very dif-
ferently from other classifiers. However, the 1NN and SVM
still obtain higher accuracies, and S2DP can also achieve the
best performance. These series of experiments presented above
show that S2DP is more robust when different classifiers were
used for classification.

V. CONCLUSION

In this paper, an image-matrix-based sparse projections
framework called S2DP was proposed for face feature extrac-
tion and recognition. S2DP combines the L1-norm elastic net
regression and SVD to iteratively learn the sparse projections
instead of solving the generalized eigenequation. Thus, we
generalized the vector-based sparse projections learning to
the image-matrix-based cases. Our theoretical analysis showed
that the sparse projections learned by our method approximate
the eigensubspace of the corresponding image-based gener-
alized eigenequation. According to the connections between
the vector-based and image-matrix-based methods, our theo-
rems also provide theoretical guarantees for the effectiveness
of vector-based sparse learning methods. The results of the
theoretical analysis also showed that S2DP is more efficient
and costs less memory space than the vector-based sparse
projection methods. Experiments on various face databases
indicate that the proposed framework outperforms other non-
sparse 2-D projection methods with different classifiers.
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